Agentic AI Modeling
Model agent orchestration, tools, and memory using Sruja DSL.
Agentic AI Modeling
This tutorial shows how to model agent-based systems with orchestrators, planners, executors, tools, and memory.
Core Structure
import { * } from 'sruja.ai/stdlib'
AgentSystem = system "Agentic System" {
Orchestrator = container "Agent Orchestrator"
Planner = container "Planner"
Executor = container "Executor"
Tools = container "Tooling API"
Memory = database "Long-Term Memory"
}
User = person "User"
User -> AgentSystem.Orchestrator "Requests task"
AgentSystem.Orchestrator -> AgentSystem.Planner "Plans steps"
AgentSystem.Orchestrator -> AgentSystem.Executor "Delegates execution"
AgentSystem.Executor -> AgentSystem.Tools "Calls tools"
AgentSystem.Executor -> AgentSystem.Memory "Updates state"
view index {
include *
}
Add Governance
Guardrails = policy "Safety Policies" {
description "Limit tool calls, enforce approvals, track risky operations"
}
R1 = requirement functional "Explain actions"
R2 = requirement constraint "No PII exfiltration"
Integrate RAG
import { * } from 'sruja.ai/stdlib'
AgentSystem = system "Agent System" {
Executor = container "Executor"
}
RAG = system "Retrieval-Augmented Generation" {
Retriever = container "Retriever"
Generator = container "Generator"
VectorDB = database "VectorDB"
}
AgentSystem.Executor -> RAG.Retriever "Fetch contexts"
RAG.Retriever -> RAG.VectorDB "Search"
RAG.Generator -> AgentSystem.Executor "Produce answer"
Next Steps
- Explore
examples/pattern_agentic_ai.srujaandexamples/pattern_rag_pipeline.sruja - Add scenarios to capture common workflows
- Use views to present developer vs. executive perspectives